Generation of differentially private heterogeneous electronic health records
K Chin-Cheong, TM Sutter, JE Vogt. (2020). "Generation of Differentially Private Heterogeneous Electronic Health Records." arxiv preprint.
K Chin-Cheong, TM Sutter, JE Vogt. (2020). "Generation of Differentially Private Heterogeneous Electronic Health Records." arxiv preprint.
I Daunhawer, TM Sutter, R Marcinkevics, JE Vogt. (2020). "Self-supervised Disentanglement of Modality-Specific and Shared Factors Improves Multimodal Generative Models." GCPR 2020.
TM Sutter, I Daunhawer, JE Vogt. (2020). "Multimodal Generative Learning Utilizing the Jensen-Shannon Divergence." Neurips 2020.
TM Sutter, JA Roth, K Chin-Cheong, BL Hug, JE Vogt. (2020). "A comparison of general and disease-specific machine learning models for the prediction of unplanned hospital readmissions." Journal of the American Medical Informatics Association, Volume 28, Issue 4, April 2021.
NR Meier, TM Sutter, M Jacobsen, THM Ottenhoff, JE Vogt, N Ritz. (2021) "Machine Learning Algorithms Evaluate Immune Response to Novel Mycobacterium tuberculosis Antigens for Diagnosis of Tuberculosis." Front. Cell. Infect. Microbiol.. 10(2020).
TM Sutter, I Daunhawer, JE Vogt. (2021). "Generalized multimodal ELBO." ICLR 2021.
HJ Klug, TM Sutter, JE Vogt. (2021). "Multimodal Generative Learning on the Mimic-CXR database." MIDL 2021 Short Paper.
TM Sutter, JE Vogt. (2021). "Multimodal Relational VAE." Neurips 2021 Workshop on Bayesian Deep Learning.
I Daunhawer, TM Suttter, K Chin-Cheong, E Palumbo, JE Vogt. (2022). "On the limitations of multimodal VAEs." ICLR 2022.
TM Sutter, S Balzer, E Ozkan, JE Vogt. (2022) "M(otion)-mode Based Prediction of Cardiac Function on Echocardiograms." Medical Imaging meets NeurIPS Workshop 2022.
TM Sutter, L Manduchi, A Ryser, JE Vogt. (2023). "Learning Group Importance using the Differentiable Hypergeometric Distribution" ICLR 2023.
E Ozkan, TM Sutter, Y Hu, S Balzer, JE Vogt. (2023) "M(otion)-mode Based Prediction of Ejection Fraction using Echocardiograms." GCPR 2023.
TM Sutter, A Ryser, J Liebeskind, JE Vogt. (2023) "Differentiable Random Partition Models." NeurIPS 2023.
A Ryser, TM Sutter, A Marx, JE Vogt (2024) "Anomaly Detection by Context Contrasting." arxiv.
TM Sutter, Y Meng, A Agostini, D Chopard, N Fortin, JE Vogt, B Shahbaba, S Mandt (2024) "Unity by Diversity: Improved Representation Learning in Multimodal VAEs." arxiv.
Talk at University of Freiburg, Freiburg Young Scientist AI Network, Freiburg, Germany
workshop talk at CSNOW SChnupperstudium at ETH Zurich, Zurich, Switzerland
panel discussion at Data-Centric Machine Learning Workshop at ICLR 2024, Vienna, Austria