Generation of differentially private heterogeneous electronic health records
K Chin-Cheong, TM Sutter, JE Vogt. (2020). "Generation of Differentially Private Heterogeneous Electronic Health Records." arxiv preprint.
K Chin-Cheong, TM Sutter, JE Vogt. (2020). "Generation of Differentially Private Heterogeneous Electronic Health Records." arxiv preprint.
I Daunhawer, TM Sutter, R Marcinkevics, JE Vogt. (2020). "Self-supervised Disentanglement of Modality-Specific and Shared Factors Improves Multimodal Generative Models." GCPR 2020.
TM Sutter, I Daunhawer, JE Vogt. (2020). "Multimodal Generative Learning Utilizing the Jensen-Shannon Divergence." Neurips 2020.
TM Sutter, JA Roth, K Chin-Cheong, BL Hug, JE Vogt. (2020). "A comparison of general and disease-specific machine learning models for the prediction of unplanned hospital readmissions." Journal of the American Medical Informatics Association, Volume 28, Issue 4, April 2021.
NR Meier, TM Sutter, M Jacobsen, THM Ottenhoff, JE Vogt, N Ritz. (2021) "Machine Learning Algorithms Evaluate Immune Response to Novel Mycobacterium tuberculosis Antigens for Diagnosis of Tuberculosis." Front. Cell. Infect. Microbiol.. 10(2020).
TM Sutter, I Daunhawer, JE Vogt. (2021). "Generalized multimodal ELBO." ICLR 2021.
HJ Klug, TM Sutter, JE Vogt. (2021). "Multimodal Generative Learning on the Mimic-CXR database." MIDL 2021 Short Paper.
TM Sutter, JE Vogt. (2021). "Multimodal Relational VAE." Neurips 2021 Workshop on Bayesian Deep Learning.
I Daunhawer, TM Suttter, K Chin-Cheong, E Palumbo, JE Vogt. (2022). "On the limitations of multimodal VAEs." ICLR 2022.
TM Sutter, S Balzer, E Ozkan, JE Vogt. (2022) "M(otion)-mode Based Prediction of Cardiac Function on Echocardiograms." Medical Imaging meets NeurIPS Workshop 2022.
TM Sutter, L Manduchi, A Ryser, JE Vogt. (2023). "Learning Group Importance using the Differentiable Hypergeometric Distribution" ICLR 2023.
E Ozkan, TM Sutter, Y Hu, S Balzer, JE Vogt. (2023) "M(otion)-mode Based Prediction of Ejection Fraction using Echocardiograms." GCPR 2023.
TM Sutter, A Ryser, J Liebeskind, JE Vogt. (2023) "Differentiable Random Partition Models." NeurIPS 2023.
A Ryser, TM Sutter, A Marx, JE Vogt (2024) "Anomaly Detection by Context Contrasting." arxiv.
TM Sutter, Y Meng, A Agostini, D Chopard, N Fortin, JE Vogt, B Shahbaba, S Mandt (2024) "Unity by Diversity: Improved Representation Learning in Multimodal VAEs." Neurips 2024.
A Agostini, D Chopard, Y Meng, N Fortin, B Shahbaba, S Mandt, TM Sutter and JE Vogt (2024) "Weakly-Supervised Multimodal Learning on MIMIC-CXR." ML4H.
Talk at University of Freiburg, Freiburg Young Scientist AI Network, Freiburg, Germany
workshop talk at CSNOW SChnupperstudium at ETH Zurich, Zurich, Switzerland
panel discussion at Data-Centric Machine Learning Workshop at ICLR 2024, Vienna, Austria